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ABSTRACT

We study a generalization of Klein-Gordon equation (gKGe) in (2+1)
dimensions which has an arbitrary element. Lie group classi�cation is
carried out on this equation. It is shown that gKGe admits a nine-
dimensional Lie algebra of equivalence transformations and six-dimensional
principal Lie algebra which has several possible extensions. The forms
of the arbitrary element are linear, exponential, power law nonlinearity
and others. Closed form solutions are obtained for some special cases
of arbitrary element. Lastly, we derive conservation laws for nonlinearly
self-adjoint subclass of the gKGe.
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1. Introduction

The sinh-Gordon (SG) equation

utt + sinhu = uxx (1)

is one of the equations which describes nonlinear wave motion. See for example
Wazwaz (2005). The SG equation (1) has many technological applications
in plasma physics, solid state physics, �uid mechanics, nonlinear optics and
biology to name but a few. Recently, one as well as two soliton solutions of SG
equation in (2+1) and (3+1) dimensions

utt + sinhu = uxx + uyy, (2)

and

utt + sinhu = uxx + uyy + uzz, (3)

respectively were investigated by Wazwaz (2012). SG equation is a special case
of

utt + p(u) = uxx, (4)

where p(u) represents various forms of many physical phenomena. The con-
struction of di�erent forms of these parameters is one of the most essential tasks
in nonlinear science. Usually the various forms of such arbitrary element(s) are
determined from experiments. Nevertheless, Lie symmetry method through its
group classi�cation (Baikov et al. (1997), Bluman and Kumei (1989), Ibragi-
mov (1996), Lie (1881), Molati and Khalique (2012), Muatjetjeja and Khalique
(2009, 2014), Olver (1993)) provides us systematically with di�erent forms of
these elements. Several researchers studied equation (4) for di�erent forms
of p(u) (see for example Khalique and Magalakwe (2014), Kheiri and Jabbari
(2010a,b), Tang and Huang (2007), Wazwaz (2006a,b,c, 2007a)). Kudra (1986)
carried out group classi�cation of (3+1)-dimensional nonlinear KG equation

utt + p(u) = uxx + uyy + uzz.

Thereafter, Azad et al. (2010) performed group classi�cation of (4) and con-
structed di�erent forms of p(u) that gave larger symmetry algebra.
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The present study is motivated by the works in (Azad et al. (2010), Kudra
(1986)). Here we study the extension of (4) to (2+1) dimensions, namely

utt + p(u) = uxx − uyy, (5)

where p(u) is an arbitrary function u.

We now give outline of this study. In Section 2 equivalence transformations
of equation (5) are computed and principal Lie algebra is determined in Section
3. In Section 4 we accomplish Lie group classi�cation of gKGe (5). Closed form
solutions for various forms of p(u) are presented in Section 5. Lastly, we present
our investigations in Section 6.

2. Equivalence transformations (ETs)

The vector �eld

S = τ∂t + ξ∂x + ψ∂y + η∂u + µ∂p, (6)

with τ , ξ, ψ, η depending on (t, x, y, u) and µ depending on (t, x, y, u, p), will
generate equivalence group of gKGe (5) if and only if it admits the extended
system

utt + p(u) = uxx + uyy, (7a)

pt = 0, px = 0, py = 0. (7b)

The prolonged vector �eld for (7) is

S̃ = S[2] + ωt∂pt + ωx∂px + ωy∂py + ωu∂pu , (8)

where

S[2] = τ∂t + ξ∂x + ψ∂y + η∂u + µ∂p + ζtt∂utt + ζxx∂uxx

+ζyy∂uyy

represents the second-prolongation of vector �eld (6). The coe�cients ω's and
ζ's are given by

ωt = D̃t(µ)− ptD̃t(τ)− pxD̃t(ξ)− pyD̃t(ψ)− puD̃t(η),

ωx = D̃x(µ)− ptD̃x(τ)− pxD̃x(ξ)− pyD̃x(ψ)− puD̃x(η),

ωy = D̃y(µ)− ptD̃y(τ)− pxD̃y(ξ)− pyD̃y(ψ)− puD̃y(η),

ωu = D̃u(µ)− ptD̃u(τ)− pxD̃u(ξ)− pyD̃u(ψ)− puD̃u(η),
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and

ζt = Dt(η)− (utDt(τ) + uxDt(ξ) + uyDt(ψ)),

ζx = Dx(η)− (utDx(τ) + uxDx(ξ) + uyDx(ψ)),

ζy = Dy(η)− (utDy(τ) + uxDy(ξ) + uyDy(ψ)),

ζtt = Dt(ζx)− (uttDt(τ) + utxDt(ξ) + utyDt(ψ)),

ζxx = Dx(ζx)− (utxDx(τ)uxxDx(ξ) + uxyDx(ψ)),

ζyy = Dy(ζy)− (utyDy(τ) + uxyDy(ξ) + uyyDy(ψ)),

respectively, with total derivatives

Dt = ∂t + ut∂u + · · · , Dx = ∂x + ux∂u + · · · , Dy = ∂y + uy∂u + · · ·

and total derivatives for extended system being

D̃t = ∂t + pt∂p + · · · ,
D̃x = ∂x + px∂p + · · · ,
D̃y = ∂y + py∂p + · · · ,
D̃u = ∂u + pu∂p + · · · .

Now utilizing (8) and invoking invariance conditions on (7) gives

S1 = ∂t, S2 = ∂x, S3 = ∂y, S4 = ∂u, S5 = −y∂x + x∂y, S6 = x∂t + t∂x,

S7 = y∂t + t∂y, S8 = u∂u + p∂p, S9 = x∂x + y∂y + t∂t − 2p∂p

as equivalent generators. Thus, equivalence group of nine-parameter is

S1 : t̄ = t+ a1, x̄ = x, ȳ = y, ū = u, p̄ = p,

S2 : t̄ = t, x̄ = x+ a2, ȳ = y, ū = u, p̄ = p,

S3 : t̄ = t, x̄ = x, ȳ = y + a3, ū = u, p̄ = p,

S4 : t̄ = t, x̄ = x, ȳ = y, ū = u+ a4, p̄ = p,

S5 : t̄ = t, x̄ = x− a5y, ȳ = y + a5x, ū = u, p̄ = p,

S6 : t̄ = t+ a6x, x̄ = x+ a6t, ȳ = y, ū = u+ p̄ = p,

S7 : t̄ = t+ a7y, x̄ = x, ȳ = y + a7t, ū = u, p̄ = p,

S8 : t̄ = t, x̄ = x, ȳ = y, ū = uea8 , p̄ = pea8 ,

S9 : t̄ = tea9 , x̄ = xea9 , ȳ = yea9 , ū = u, p̄ = pe−2a9 ,
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whose composition gives

t̄ = (t+ a1 + a6x+ a7y)ea9 ,

x̄ = (x+ a2 − a5y + a6t)e
a9 ,

ȳ = (y + a3 + a5x+ a7t)e
a9 ,

ū = (u+ a4)ea8 ,

p̄ = pea8−2a9 .

3. The principal Lie algebra

Let

Γ = τ
∂

∂t
+ ξ

∂

∂x
+ ψ

∂

∂y
+ η

∂

∂u
(9)

be in�nitesimal generator of symmetry group of gKGe (5). Application of Γ[2]

to (5), expanding and splitting yields

τu = 0, ψu = 0, ξu = 0, ηuu = 0, τy = ψt, ξy + ψx = 0, ξt = τx,

ψy = τt, ψy − ξx = 0, τtt − τxx − τyy + 2ηtu = 0,

ξtt − ξxx − ξyy + 2ηxu = 0, ψtt − ψxx − ψyy + 2ηyu = 0, (10)

p(u)ηu − 2p(u)ψy − p′(u)η − ηtt + ηxx + ηxx = 0.

The solution for arbitrary p(u) of this system gives us six operators, viz.,

Γ1 = ∂t, Γ2 = ∂x, Γ3 = ∂y, Γ4 = y∂t + t∂y,

Γ5 = x∂t + t∂x, Γ6 = y∂x − x∂y,

which is principal Lie algebra of gKGe (5).

4. Lie group classi�cation

The solution of (10) provides us with classifying relation (CR)

(uβ + γ)p′(u) + αp(u) + λ = 0

with constants β, γ, α and λ. This CR is invariant under ETs of Section 2 if

β̄ = β, γ̄ = a4β + γe−a8 , ᾱ = α, λ̄ = λe2a9−a8 . (11)

The above relation leads to the following �ve cases for the function p(u).
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Case 1 p(u) arbitrary, but not as one of functions of Cases 2− 5 below.

This yields principal Lie algrebra, viz.,

Γ1 = ∂t, Γ2 = ∂x, Γ3 = ∂y, Γ4 = y∂t + t∂y,

Γ5 = x∂t + t∂x, Γ6 = y∂x − x∂y. (12)

Case 2 p(u) = σ + δu, where σ and δ are constants.

Here two subcases arise:

2.1 σ, δ 6= 0.

The corresponding equation (5) gives an extension of principal Lie algebra by
one operator

Γ7 = u
∂

∂u
, Γ8 = H (t, x, y)

∂

∂u
,

where H solves

Htt −Hxx −Hyy + δH − C1σ = 0

and C1 is a constant.

2.2 σ 6= 0, δ = 0.

This subcase extends the principal Lie algebra by six symmetries

Γ7 = u
∂

∂u
, Γ8 = (t2 + x2 + y2)

∂

∂t
+ t

(
2x

∂

∂x
+ y

∂

∂y
− u ∂

∂u

)
,

Γ9 = t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y
, Γ10 = 2y

(
t
∂

∂t
+ x

∂

∂x

)
+ (t2 − x2 + y2)

∂

∂y
− yu ∂

∂u
,

Γ11 = 2xt
∂

∂t
+ (t2 + x2 − y2)

∂

∂x
+ x

(
2y

∂

∂y
− u ∂

∂u

)
, Γ12 = H (t, x, y)

∂

∂u
,

where H(t, x, y) solves

2Htt − 2Hxx − 2Hyy + 10C4σt+ 5C6σx− 10C7σy − 2C1σ + 5C11σ = 0

and C1, C4, C6, C7, C11 are constants.

Case 3 p(u) = σ + δun, where σ is a constant, δ is non-zero constant and
n 6= 0, 1.
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Three subcases arise. These are

3.1 σ 6= 0.

Here we have no additional Lie symmetry.

3.2 σ = 0, n 6= 5.

In this case we obtain one additional symmetry

Γ7 = (n− 1)

(
t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y

)
− 2u

∂

∂u
.

3.3 σ = 0, n = 5.

In this subcase, four operators

Γ7 = (t2 + x2 + y2)
∂

∂t
+ t

(
2x

∂

∂x
+ y

∂

∂y
− u ∂

∂u

)
,

Γ8 = 2y

(
t
∂

∂t
+ x

∂

∂x

)
+ (t2 − x2 + y2)

∂

∂y
− yu ∂

∂u
,

Γ9 = 2tx
∂

∂t
+ (t2 + x2 − y2)

∂

∂x
+ x

(
2y

∂

∂y
− u ∂

∂u

)
,

Γ10 = 2

(
t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y

)
− u ∂

∂u

extend the principal Lie algebra.

Case 4 p(u) = σ+δenu, where σ is a constant, δ and n are non-zero constants.

Here two subcases arise.

4.1 σ 6= 0.

No additional symmetry is generated in this subcase.

4.2 σ = 0.

The extra Lie point symmetry is

Γ7 = n

(
t
∂

∂t
+ x

∂

∂x
+ y

∂

∂y

)
− 2

∂

∂u
.
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Remark. In subcases 4.2 we retrieve two special equations, namely, the gen-
eralized Liouville equation in (2+1) dimensions (Wazwaz (2007b)) utt − uxx −
uyy + δenu = 0 and the generalized (2+1)-dimensional combined sinh-cosh-
Gordon (Fan et al. (2011)) utt − uxx − uyy + δ(sinh(nu) + cosh(nu)) = 0.

Case 5 p(u) = σ + δ lnu, where σ is a constant and δ is nonzero constant.

This case reduces to Case 1.

5. Travelling wave solutions of two cases

Associated Lagrange's system

dt

τ
=
dx

ξ
=
dy

ψ
=
du

η

is solved to generate exact solutions of gKGe (5). We consider two nonlinear
cases, namely, Case 3.2 and Case 4.2.

5.1 Group-invariant solution of Case 3.2

In Case 3.2 gKGe (5) becomes

utt − uxx − uyy + δun = 0, n 6= 0, 1. (13)

We use the Lie point symmetry Γ = Γ1+Γ2+Γ3 to reduce equation (13) into
a PDE with two new independent variables z, w and v as the new dependent
variable. The symmetry Γ yields the invariants u = v(z, w), z = −t+ x and
w = −t+ y which transform (13) into the nonlinear second-order PDE

2vzw + δvn = 0. (14)

Equation (14) admits the four symmetries

X1 =
∂

∂z
, X2 =

∂

∂w
, X3 = (n− 1)z

∂

∂z
+ v

∂

∂v
, X4 = (n− 1)w

∂

∂w
+ v

∂

∂v
.

The symmetry X1 + cX2 provides v = f(s) as group-invariant solution, with
s = w − cz (c a constant) and f(s) satisfying the ODE

2cf
′′
(s)− δf(s)n = 0. (15)
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Multiplying (15) by f ′(s) and integrating, we obtain

δf(s)n+1

n+ 1
− cf ′2(s) = C1 (16)

with C1 a constant. Equation (16) is a variables separable equation, which on
integration yields

−
cf(s)

√
δf(s)n+1 − C1(n+ 1)

C1

√
c(n+ 1)

2F1

(
1,

1

2
+

1

n+ 1
; 1 +

1

n+ 1
;
δf(s)n+1

nC1 + C1

)
= ±s+ C2

with C2 a constant and 2F1 being the generalized hypergeometric function
(Gradshteyn and Ryzhik (2000)). Thus in (t, x, y) variables the solution of
gKGe (13) is

−
c u
√
δun+1 − C1(n+ 1)

C1

√
c(n+ 1)

2F1

(
1,

1

2
+

1

n+ 1
; 1 +

1

n+ 1
;

δun+1

nC1 + C1

)
= ±{(c− 1)t− cx+ y}+ C2.

A special solution of (13) can be obtained by taking C1 = 0 in (16). Then the
integration of (16) with C1 = 0 yields

u(t, x, y) =

(
2

n− 1

) 2
n−1

[√
δ

c(n+ 1)
{(c− 1)t− cx+ y}+ C2

] 2
1−n

, n 6= −1, 1.

5.2 Group-invariant solution of Case 4.2

For the Case 4.2, the equation (5) becomes

utt − uxx − uyy + δenu = 0, δ, n 6= 0, (17)

Again using the symmetry Γ = Γ1 + Γ2 + Γ3 and the invariants u = v(z, w),
z = x− t and w = y − t, the equation (17) transforms into the nonlinear PDE

2vzw + δenv = 0. (18)

This equation admits the point symmetries

X1 =
∂

∂z
, X2 =

∂

∂w
, X3 = f(z)

∂

∂v
, X4 = g(w)

∂

∂v
, X5 = w

∂

∂w
− z ∂

∂v
.

Invoking symmetry X1 + cX2 gives an invariant s = w − cz (c a constant) with
group-invariant solution v = F (s), where F solves the ODE

2cF
′′
(s)− δenF (s) = 0. (19)
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Integrate above equation twice and revert to (t, x, y) variables will give the
solution of gKGe (17) that reads

u(t, x, y) =
1

n
ln

[
cC1

δn

{
tanh2

(
1

2

√
C1 [C2 + {(c− 1)t− cx+ y}]

)
− 1

}]
(20)

with C1, C2 being constants.

6. Subclass of nonlinearly self-adjoint equations
and conservation Laws

We employ Ibragimov's theorem and obtain conservations laws for the non-
linearly self-adjoint (Gandarias et al. (2013), Ibragimov (2011a,b)) subclass of
the generalized (2+1)-dimensional Klein-Gordon equation (5).

6.1 Preliminaries and De�nitions

Consider rth-order PDE

E(x, u, u(1), . . . , u(r)) = 0, (21)

where x = (x1, . . . , xn) and u(1) = {ui}, u(2) = {uij}, . . . denote �rst, second,
etc. orders partial derivatives of dependent variable u, that is, ui = ∂u/∂xi,
uij = ∂2u/∂xi∂xj . Adjoint equation (Ibragimov (2007)) of (21) is given as

E∗(x, u, v, u(1), v(1), . . . , u(r), v(r)) = 0, (22)

with

E∗(x, u, v, u(1), v(1), . . . , u(r), v(r)) =
δ(v F )

δu
, (23)

where
δ

δu
=

∂

∂u
+

∞∑
k=1

(−1)kDi1 · · ·Dik

∂

∂ui1···ik
(24)

represents Euler-Lagrange operator. The variable v here is a new dependent
variable, and Di the usual total di�erentiations.

The following de�nitions are taken from (Gandarias et al. (2013), Ibragimov
(2011a,b)).

De�nition 6.1. Equation (21) is self-adjoint provided equation obtained from
(22) by letting v = u, viz.,

E∗(x, u, u, u(1), u(1), . . . , u(s), u(s)) = 0,
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is same as (21).

De�nition 6.2. Equation (21) is nonlinearly self-adjoint provided equation
obtained from (22) by letting v = h(x, t, u, u(1), . . . ), with h(x, t, u, u(1), . . . )
such that h(x, t, u, u(1), . . . ) 6= 0, is same as (21).

6.2 Self-adjointness and nonlinearly self-adjointness

We derive nonlinearly self-adjointness equations from (5). Equation (23)
gives

E∗ =
δ

δu
[v(utt − uxx − uyy + p(u))] = vtt − vxx − vyy + p′(u)v. (25)

Putting v = h(x, t, u) in (25) we obtain

p′(u)h+ htt + 2uthtu + utthu + u2thuu − hxx − 2uxhxu
−uxxhu − u2xhuu − hyy − 2uyhyu − uyyhu − u2yhuu.

We now assume that

E∗ − λ(utt − uxx − uyy + p(u)) = 0, (26)

where λ is an undetermined coe�cient. Condition (26) yields

p′(u)h+ htt + 2uthtu + utthu + u2thuu − hxx − 2uxhxu − uxxhu − u2xhuu
−hyy − 2uyhyu − uyyhu − u2yhuu − λutt + λuxx + λuyy − λp(u),

which gives

hu − λ = 0, huu = 0, htu = 0, hxu = 0, hyu = 0,
p′(u)h+ htt − hxx − hyy − p(u)hu = 0.

The solution of these PDEs yields

p(u) = c2u, h = c1u+B(t, x, y),

with c1, c2 being constants and B solves

Btt −Bxx −Byy + c2B = 0. (27)

Thus we have theorem 6.1.

Theorem 6.1. Equation (5) is nonlinearly self-adjoint when p(u) = c2u with

h = c1u+B(t, x, y)

for any function B satisfying condition (27).
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6.3 Conservation laws

We recall Ibragimov's theorem (Ibragimov (2007)) and use it in conjunc-
tion with theorem 6.1 to compute conservation laws of nonlinearly self-adjoint
equation.

Theorem 6.2. Any symmetry (non-local or Lie-Bäcklund)

G = ξi(x, u, u(1), . . .)
∂

∂xi
+ η(x, u, u(1), . . .)

∂

∂u
(28)

of (21) gives conservation law Di(T
i) = 0 for (21)-(22), where its components

are

T i = ξiL+W

[
∂L

∂ui
−Dj

(
∂L

∂uij

)
+DjDk

(
∂L

∂uijk

)
− · · ·

]

+Dj(W )

[
∂L

∂uij
−Dk

(
∂L

∂uijk

)
+ · · ·

]
+DjDk(W )

[
∂L

∂uijk
− · · ·

]
+ · · · ,

(29)
with W and L being given by

W = η − ξjuj , L = v F
(
x, u, u(1), . . . , u(s)

)
. (30)

We invoke Theorem 6.2 and �nd conserved vectors for nonlinearly self-
adjoint equation

utt − uxx − uyy + c2u = 0. (31)

This equation has Lagrangian L given by

L = [c1u+B(t, x, y)] [utt − uxx − uyy + c2u] (32)

and eight Lie symmetries

X1 = ∂t, X2 = ∂x, X3 = ∂y, X4 = x∂t + t∂x, X5 = y∂t + t∂y,

X6 = −y∂x + x∂y, X7 = u∂u X8 = F (t, x, y) ∂u,

where F satis�es Ftt − Fxx − Fyy + c2F = 0.

Thus the conservation laws associated with eight symmetries have the fol-
lowing conserved vectors:

T 1
1 = c1u(−uxx − uyy + c2u) +B(−uxx − uyy + c2u) + c1u

2
t + utBt,

T 2
1 = −c1utux − utBx + c1uutx + utxB,

T 3
1 = −c1utuy − utBy + c1uuty + utyB;
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T 1
2 = c1utux + utBx − c1uutx − utxB,
T 2
2 = c1u(utt − uyy + c2u) +B(utt − uyy + c2u)− c1u2x − uxBx,

T 3
2 = −c1uxuy − uxBy + c1uuxy + uxyB;

T 1
3 = c1utuy + uyBt − c1uuty − utyB,
T 2
3 = −c1uxuy − uyBx + c1uuxy + uxyB,

T 3
3 = c1u(utt − uxx + c2u) +B(utt − uxx + c2u)− c1u2y − uyBy;

T 1
4 = c1xu(−uxx − uyy + c2u) +Bx(−uxx − uyy + c2u) + c1xu

2
t + c1tutux + xutBt

+tuxBt − c1uux − uxB − c1tuutx − tutxB,
T 2
4 = c1tu(utt − uyy + c2u) +Bt(utt − uyy + c2u)− c1xutux − c1tu2x − xutBx

−tuxBx + c1uut + utB + c1xuutx + xutxB,

T 3
4 = −c1xutuy − c1tuxuy − xutBy − tuxBy + c1xuuty

+c1tuuxy + xutyB + tuxyB;

T 1
5 = c1yu(−uxx − uyy + c2u) +By(−uxx − uyy + c2u) + c1yu

2
t + c1tutuy + yutBt

tuyBt − c1uuy − uyB − c1tuuyt − tuytB,
T 2
5 = −c1yutux − c1tuxuy − yutBx − tuyBx + c1yuutx + yutxB + c1tuuxy + tuxyB

T 3
5 = c1tu(utt − uxx + c2u) +Bt(utt − uxx + c2u)− c1yutuy − c1tu2y − yutBy

−tuyBy + c1uut + utB + c1yuuty + yutyB;

T 1
6 = −c1yutux + c1xutuy − yuxBt + xuyBt + c1yuutx − c1xuuty + yuxyB − xutyB,
T 2
6 = −c1yu(utt − uyy + c2u)−By(utt − uyy + c2u) + c1yu

2
x − c1xuxuy + yuxBx

−xuyBx + c1uuy + uyB + c1xuuxy + xuxyB,

T 3
6 = c1xu(utt − uxx + c2u) +Bx(utt − uxx + c2u) + c1yuxuy − c1xu2y + yuxBy

−xuyBy − c1uux − uxB − c1yuuxy − yuxyB;

T 1
7 = utB − uBt,

T 2
7 = uBx − uxB
T 3
7 = uBy −Buy;

T 1
8 = c1uFt + FtB − FBt − c1utF,
T 2
8 = c1uxF + FBx − c1uFx − FxB

T 3
8 = c1uyF + FBy − c1uFy − FyB,

respectively, where functions B(t, x, y), F (t, x, y) solves

φtt − φxx − φyy + c2φ = 0.
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7. Conclusions

The Lie group classi�cation was performed on the generalized (2+1)- di-
mensional Klein-Gordon equation (5). The arbitrary element p(u) in (5) was
found to be a linear function, power law function, exponential function and
logarithmic function. From the classi�cation we retrieved two special equa-
tions, namely, the generalized Liouville equation in (2+1) dimension and the
(2+1)-dimensional generalized combined sinh-cosh-Gordon equation. In addi-
tion, group-invariant solutions of (1.5) were derived for power law and expo-
nential function cases. We have also illustrated that the generalized (2+1)-
dimensional Klein-Gordon equation is nonlinearly self-adjoint under the condi-
tions given in Theorem 6.1. Lastly conservation laws for nonlinearly self-adjoint
subclass were derived by invoking Ibragimov's theorem.
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